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Introduction

The objective of the work presented here arose from abnormal, drop scenarios and specif-
ically the question of how the accelerations and accumulation of plastic strains of internal
components could be affected by the material properties of the external structure. In some
scenarios, the impact loads can induce cyclic motion of the internal components. Therefore,
a second objective was to explore differences that could be expected when simulations are
conducted using isotropic hardening vs. kinematic hardening plasticity models.

The simplest model that can be used to investigate the objectives above is a two-degree-of-
freedom mass/spring model where the springs exhibit elastic-plastic behavior. The purpose
of this memo is to develop such model and present a few results that address the objectives.

Model

Figure 1 presents the model used in this work. It consists of two discrete masses m1 and m2

and two elastic-plastic springs: S1, between a base and m1 and S1 joining the two masses.
Here, m1 and S1 represent the external structure of the dropped object while m2 and S2

represent the internal mass and material. The two degrees of freedom are the displacements
u1 and u2 while the base motion uo is prescribed. For the examples presented here uo = 0
and the system is excited by prescribing the initial conditions as u1(0) = u2(0) = 0 and
u̇1(0) = u̇2(0) = vo. Here, the dots represent derivatives with respect to time.

From the free-body-diagrams in Fig. 2, the equations of motion of the system are

ü1 = − 1

m1

(−F1 + F2) (1)

ü2 = − 1

m2

F2 (2)
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Figure 1. Schematic of the model.

where F1 and F2 are the forces exerted by S1 and S2, respectively. The generic elastic-plastic
force-stretch (F -δ) response of the springs is shown in Fig. 3. It is bi-linear with elastic
slope k, yield force F o and post-yield slope k′. The relation between F and δ is written in
incremental form as follows:

dF = dF (k1, k2, F
o, ρ, ι, dδ) (3)

where ρ is a real state variable, and ι is an integer state variable. Here dF and dδ represent
increments in F and δ. In this model, the stretch in each of the two springs is given by

δ1 = u1 − uo (4)

δ2 = u2 − u1. (5)

In the case of isotropic hardening ρ represents the maximum force achieved during plastic
deformation Fmax. While the size of the elastic region is initially 2F o, it grows to 2Fmax

during plastic deformation. Therefore, upon reverse loading from a state with force Fmax

yielding occurs when the force is −Fmax as shown in dashed line in Fig. 3. In kinematic
hardening, on the other hand, the size of the elastic region remains fixed at 2Fo, so upon
reverse loading, yielding occurs when the force changes by 2F o from the point of unloading.
In this case the elastic region must translate along the F axis during plastic deformation.
Here ρ represents the position of the center of the elastic region, which is shown as α in the
figure and is plotted as a function of δ in dash-dot line. The F -δ response during reverse
loading is shown in solid line. Finally, the integer state variable ι simply tracks whether
deformation occurs elastically or plastically.
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Figure 2. Free body diagrams.

The solution of the equations of motion was accomplished using the function ode45 in Matlab.
Verification exercises included writing a separate script assuming that both springs were
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Figure 3. Bi-linear spring behavior for isotropic and kinematic hardening.

linearly elastic, and then comparing its results to those of the elastic-plastic scripts when no
plastic deformation occurred. In addition, the scripts of the material response were exercised
separately to verify that they produced the expected responses. The size of the time step
was also chosen by comparing results from several values.

Results

Even with only two degrees of freedom and simple bi-linear force-displacement relations for
the springs, the model contains 8 parameters. Since the objective of this work was purely
demonstrative, no physical system was used to set the parameters of the model. So, the
sizing of the arbitrary parameters was conducted as follows: The mass m2 was taken to be
one half of m1. They were given the values of 5 and 10 respectively1. The values of k1
and k2 were taken to be equal so that the fundamental frequency of the system was about
300. Making k1 = k2 = 50 × 106 gave the natural frequencies for the two modes values of
270 and 670. The yield forces F o

1 , F o
2 and the post-yield slopes k′1, k

′
2 were chosen to give

approximately realistic elastic-plastic responses, and their values are given in Table 1 for the
nominal case and the variations to be considered. The parameters that deviate from the
nominal case are shown in bold font. Finally, the initial conditions of the system were taken
as u1(0) = u2(0) = 0 and u̇1(0) = u̇2(0) = −20.

Figure 4 shows five plots of the response of the system for the nominal parameter set. Figure
4(a) shows the displacements of the masses as functions of time. The simulation time was
0.015, sufficient to achieve a steady-state with minimal additional plastic deformation. Note
that the kinematic hardening model damps the motion more than the isotropic hardening
model. The same can be seen in Fig. 4(b) for the acceleration response. In both plots it

1Since no physical system was modeled, the units of the model parameters and variables are irrelevant.
Hence, no units will be presented.
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Table 1. Model parameters. The properties of m2 and S2 remain the same for all cases.

Case m1 k1 k′1 F o
1 m2 k2 k′2 F o

2

Nom. 10 50 × 106 1.6 × 106 80 × 103 5 50 × 106 3.2 × 106 40 × 103

Var. 1 10 50 × 106 1.6 × 106 100 × 103 5 50 × 106 3.2 × 106 40 × 103

Var. 2 10 50 × 106 2.0 × 106 80 × 103 5 50 × 106 3.2 × 106 40 × 103

Var. 3 10 50 × 106 2.0 × 106 100 × 103 5 50 × 106 3.2 × 106 40 × 103

can be seen that, as expected, the predictions of the two elastic-plastic models are identical
for the first acceleration pulse. Figure 4(c) shows the force-stretch response of the springs.
Note that the responses are identical up until the first unloading, but then S1 yields upon
reverse loading for kinematic hardening, but remains linearly elastic for isotropic hardening.
Figure 4(d) shows the behavior of S2 in more detail. Note the higher forces in the isotropic
hardening case. Finally 4(e) Shows the accumulation of plastic deflection in S2, given by δp2
as function of time. In this case, the isotropic model gives a higher accumulation of plastic
deflections.

Figure 5 shows the same five plots but for the first variation, consisting of raising the value
of F o

1 by 25% to 100 × 103. The main difference resulting from raising the value of F o
1 can

be seen in Figs. 5(c) through (e). Note the larger magnitudes of the forces in the springs as
well as the more severe plastic deformation in S2. The kinematic hardening model predicted
a more severe reverse load in S2 than the isotropic model. For this reason, the accumulated
plastic deflection of S2 is more severe for kinematic hardening than for isotropic hardening,
the reverse of the nominal case.

Figure 6 shows what happens when F o
1 has the value of the nominal case, but k′1 increases by

25% to 2.0×106 in variation 2. In this case the springs also see higher loads and deformations
than in the nominal case, and the isotropic hardening model gives higher plastic deformation
accumulation in S2. Finally, Figure 7 shows the case when both k′1 and F o

1 are 25% higher
than in the nominal case. This combination causes the highest loads and deformations in
the springs as well as the highest amount of plastic deformation. Note that the kinematic
hardening model yields higher values of accumulated plastic deflection.
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Figure 4. Results for the nominal case. (a) Displacements vs. time, (b) accelerations vs.
time, (c) force vs. stretch for both springs, (d) force vs. stretch for S2 only and
(e) accumulation of plastic deflection in S2.
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Figure 5. Results for variation 1. (a) Displacements vs. time, (b) accelerations vs. time,
(c) force vs. stretch for both springs, (d) force vs. stretch for S2 only and (e)
accumulation of plastic deflection in S2.
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Figure 6. Results for variation 2. (a) Displacements vs. time, (b) accelerations vs. time,
(c) force vs. stretch for both springs, (d) force vs. stretch for S2 only and (e)
accumulation of plastic deflection in S2.
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Figure 7. Results for variation 3. (a) Displacements vs. time, (b) accelerations vs. time,
(c) force vs. stretch for both springs, (d) force vs. stretch for S2 only and (e)
accumulation of plastic deflection in S2.
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Summary

• Changing the properties of S1 could have significant impact on the plastic deflection of
S2. Figures 8(a) and (b) compare the accumulated plastic deflection in S2 for isotropic
and kinematic hardening, respectively. Enhancing the strength of S1 causes more severe
plastic deflections in S2 since S1 dissipates less energy. In fact, making S1 strictly elastic
induces final accumulated plastic deflections in S2 in the order of 0.03 and 0.075 for
the isotropic and kinematic models, respectively.

• Comparing the results in Figs. 4(b), 5(b), 6(b) and 7(b) shows that the effect of the
variation in the parameters on the acceleration of m2 was not as significant as it was
on the accumulated plastic deflections. The highest acceleration of m2 on variation 3
was 27% higher than in the nominal case, whereas the maximum accumulated plastic
deflection increased essentially five-fold.

• Using kinematic hardening can yield results that have more or less accumulation of
plastic deflection in S2 depending of the value of the parameters of S1.

• Kinematic hardening damped the motion more severely, with plastic deformation es-
sentially ceasing after one load reversal.

• Some of the accumulation of plastic deflection occurred in compression. The impact of
accumulated plastic strain in compression on ductile failure has not been investigated.
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Figure 8. Comparison of accumulated plastic deflection in S2 for all cases considered. (a)
Isotropic hardening and (b) kinematic hardening.

The results presented here are based on a very limited exploration of the parameter space
of the problem. They show that, under impact loads, the accumulation of plastic strain
in internal components may be sensitive to moderate changes in the properties of the outer
structure. Clearly, in simulating the response of actual structural systems of interest, models
of those structures should be constructed and loaded by realistic loads to explore sensitivities.
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